Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 18 de 18
Filtre
1.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2048259.v1

Résumé

The SARS-CoV-2 Omicron (B.1.1.529) Variant of Concern (VOC) and its sub-lineages (including BA.2, BA.4, BA.5, BA.2.12.1) contain spike mutations that confer high level resistance to neutralizing antibodies. The NVX-CoV2373 vaccine, a protein nanoparticle vaccine, has value in countries with constrained cold-chain requirements. Here we report neutralizing titers following two or three doses of NVX-CoV2373. We show that after two doses, Omicron sub-lineages BA.1 and BA.4/BA.5 were resistant to neutralization by 72% (21/29) and 59% (17/29) of samples. However, after a third dose of NVX-CoV2373, we observed high titers against Omicron BA.1 (GMT: 1,197) and BA.4/BA.5 (GMT: 582), with responses similar in magnitude to those triggered by three doses of an mRNA vaccine.These data are of particular relevance as BA.4/BA.5 is dominating in multiple locations, and highlight the potential utility of the NVX-CoV2373 vaccine as a booster in resource-limited environments.

2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.08.19.22278993

Résumé

South Africa was among the first countries to detect the SARS-CoV-2 Omicron variant. Propelled by increased transmissibility and immune escape properties, Omicron displaced other globally circulating variants within 3 months of its emergence. Due to limited testing, Omicron's attenuated clinical severity, and an increased risk of reinfection, the size of the Omicron BA.1 and BA.2 subvariants (BA.1/2) wave remains poorly understood in South Africa and in many other countries. Using South African data from urban and rural cohorts closely monitored since the beginning of the pandemic, we analyzed sequential serum samples collected before, during, and after the Omicron BA.1/2 wave to infer infection rates and monitor changes in the immune histories of participants over time. Omicron BA.1/2 infection attack rates reached 65% (95% CI, 60% - 69%) in the rural cohort and 58% (95% CI, 61% - 74%) in the urban cohort, with repeat infections and vaccine breakthroughs accounting for >60% of all infections at both sites. Combined with previously collected data on pre-Omicron variant infections within the same cohorts, we identified 14 distinct categories of SARS-CoV-2 antigen exposure histories in the aftermath of the Omicron BA.1/2 wave, indicating a particularly fragmented immunologic landscape. Few individuals (<6%) remained naive to SARS-CoV-2 and no exposure history category represented over 25% of the population at either cohort site. Further, cohort participants were more than twice as likely to get infected during the Omicron BA.1/2 wave, compared to the Delta wave. Prior infection with the ancestral strain (with D614G mutation), Beta, and Delta variants provided 13% (95% CI, -21% - 37%) , 34% (95% CI, 17% - 48%), and 51% (95% CI, 39% - 60%) protection against Omicron BA.1/2 infection, respectively. Hybrid immunity (prior infection and vaccination) and repeated prior infections (without vaccination) reduced the risks of Omicron BA.1/2 infection by 60% (95% CI, 42% - 72%) and 85% (95% CI, 76% - 92%) respectively. Reinfections and vaccine breakthroughs had 41% (95% CI, 26% - 53%) lower risk of onward transmission than primary infections. Our study sheds light on a rapidly shifting landscape of population immunity, along with the changing characteristics of SARS-CoV-2, and how these factors interact to shape the success of emerging variants. Our findings are especially relevant to populations similar to South Africa with low SARS-CoV-2 vaccine coverage and a dominant contribution of immunity from prior infection. Looking forward, the study provides context for anticipating the long-term circulation of SARS-CoV-2 in populations no longer naive to the virus.


Sujets)
Infections
3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.07.20.22277839

Résumé

Background Data on risk factors for COVID-19-associated hospitalisation and mortality in high HIV prevalence settings are limited. Methods Using existing syndromic surveillance programs for influenza-like-illness and severe respiratory illness at sentinel sites in South Africa, we identified factors associated with COVID-19 hospitalisation and mortality. Results From April 2020 through March 2022, SARS-CoV-2 was detected in 24.0% (660/2746) of outpatient and 32.5% (2282/7025) of inpatient cases. Factors associated with COVID-19-associated hospitalisation included: older age (25-44 [adjusted odds ratio (aOR) 1.8, 95% confidence interval (CI) 1.1-2.9], 45-64 [aOR 6.8, 95%CI 4.2-11.0] and [≥]65 years [aOR 26.6, 95%CI 14.4-49.1] vs 15-24 years); black race (aOR 3.3, 95%CI 2.2-5.0); obesity (aOR 2.3, 95%CI 1.4-3.9); asthma (aOR 3.5, 95%CI 1.4-8.9); diabetes mellitus (aOR 5.3, 95%CI 3.1-9.3); HIV with CD4 [≥]200/mm3 (aOR 1.5, 95%CI 1.1-2.2) and CD4<200/mm3 (aOR 10.5, 95%CI 5.1-21.6) or tuberculosis (aOR 12.8, 95%CI 2.8-58.5). Infection with Beta (aOR 0.5, 95%CI 0.3-0.7) vs Delta variant and being fully vaccinated (aOR 0.1, 95%CI 0.1-0.3) were less associated with COVID-19 hospitalisation. In-hospital mortality was increased in older age (45-64 years [aOR 2.2, 95%CI 1.6-3.2] and [≥]65 years [aOR 4.0, 95%CI 2.8-5.8] vs 25-44 years) and male sex (aOR1.3, 95%CI 1.0-1.6) and was lower in Omicron -infected (aOR 0.3, 95%CI 0.2-0.6) vs Delta-infected individuals. Conclusion Active syndromic surveillance encompassing clinical, laboratory and genomic data identified setting-specific risk factors associated with COVID-19 severity that will inform prioritization of COVID-19 vaccine distribution. Elderly, people with tuberculosis or people living with HIV, especially severely immunosuppressed should be prioritised for vaccination.


Sujets)
Infections à VIH , Hépatite D , Diabète , Asthme , Obésité , Tuberculose , COVID-19 , Insuffisance respiratoire
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.07.18.22277743

Résumé

In this South African phase 1/2b study, we demonstrated vaccine efficacy (VE) of two doses of AZD1222 for asymptomatic and symptomatic SARS-CoV-2 infection: 90.6% against wild-type and 77.1% against the Delta variant [≥]9 months after vaccination. VE against infection with the Beta variant, which preceded circulation of Delta, was 6.7%. Clinical trial identifierCT.gov NCT04444674


Sujets)
COVID-19
5.
Houriiyah Tegally; James E. San; Matthew Cotten; Bryan Tegomoh; Gerald Mboowa; Darren P. Martin; Cheryl Baxter; Monika Moir; Arnold Lambisia; Amadou Diallo; Daniel G. Amoako; Moussa M. Diagne; Abay Sisay; Abdel-Rahman N. Zekri; Abdelhamid Barakat; Abdou Salam Gueye; Abdoul K. Sangare; Abdoul-Salam Ouedraogo; Abdourahmane SOW; Abdualmoniem O. Musa; Abdul K. Sesay; Adamou LAGARE; Adedotun-Sulaiman Kemi; Aden Elmi Abar; Adeniji A. Johnson; Adeola Fowotade; Adewumi M. Olubusuyi; Adeyemi O. Oluwapelumi; Adrienne A. Amuri; Agnes Juru; Ahmad Mabrouk Ramadan; Ahmed Kandeil; Ahmed Mostafa; Ahmed Rebai; Ahmed Sayed; Akano Kazeem; Aladje Balde; Alan Christoffels; Alexander J. Trotter; Allan Campbell; Alpha Kabinet KEITA; Amadou Kone; Amal Bouzid; Amal Souissi; Ambrose Agweyu; Ana V. Gutierrez; Andrew J. Page; Anges Yadouleton; Anika Vinze; Anise N. Happi; Anissa Chouikha; Arash Iranzadeh; Arisha Maharaj; Armel Landry Batchi-Bouyou; Arshad Ismail; Augustina Sylverken; Augustine Goba; Ayoade Femi; Ayotunde Elijah Sijuwola; Azeddine Ibrahimi; Baba Marycelin; Babatunde Lawal Salako; Bamidele S. Oderinde; Bankole Bolajoko; Beatrice Dhaala; Belinda L. Herring; Benjamin Tsofa; Bernard Mvula; Berthe-Marie Njanpop-Lafourcade; Blessing T. Marondera; Bouh Abdi KHAIREH; Bourema Kouriba; Bright Adu; Brigitte Pool; Bronwyn McInnis; Cara Brook; Carolyn Williamson; Catherine Anscombe; Catherine B. Pratt; Cathrine Scheepers; Chantal G. Akoua-Koffi; Charles N. Agoti; Cheikh Loucoubar; Chika Kingsley Onwuamah; Chikwe Ihekweazu; Christian Noel MALAKA; Christophe Peyrefitte; Chukwuma Ewean Omoruyi; Clotaire Donatien Rafai; Collins M. Morang'a; D. James Nokes; Daniel Bugembe Lule; Daniel J. Bridges; Daniel Mukadi-Bamuleka; Danny Park; David Baker; Deelan Doolabh; Deogratius Ssemwanga; Derek Tshiabuila; Diarra Bassirou; Dominic S.Y. Amuzu; Dominique Goedhals; Donald S. Grant; Donwilliams O. Omuoyo; Dorcas Maruapula; Dorcas Waruguru Wanjohi; Ebenezer Foster-Nyarko; Eddy K. Lusamaki; Edgar Simulundu; Edidah M. Ong'era; Edith N. Ngabana; Edward O. Abworo; Edward Otieno; Edwin Shumba; Edwine Barasa; EL BARA AHMED; Elmostafa EL FAHIME; Emmanuel Lokilo; Enatha Mukantwari; Erameh Cyril; Eromon Philomena; Essia Belarbi; Etienne Simon-Loriere; Etile A. Anoh; Fabian Leendertz; Fahn M. Taweh; Fares Wasfi; Fatma Abdelmoula; Faustinos T. Takawira; Fawzi Derrar; Fehintola V Ajogbasile; Florette Treurnicht; Folarin Onikepe; Francine Ntoumi; Francisca M. Muyembe; FRANCISCO NGIAMBUDULU; Frank Edgard ZONGO Ragomzingba; Fred Athanasius DRATIBI; Fred-Akintunwa Iyanu; Gabriel K. Mbunsu; Gaetan Thilliez; Gemma L. Kay; George O. Akpede; George E Uwem; Gert van Zyl; Gordon A. Awandare; Grit Schubert; Gugu P. Maphalala; Hafaliana C. Ranaivoson; Hajar Lemriss; Hannah E Omunakwe; Harris Onywera; Haruka Abe; HELA KARRAY; Hellen Nansumba; Henda Triki; Herve Alberic ADJE KADJO; Hesham Elgahzaly; Hlanai Gumbo; HOTA mathieu; Hugo Kavunga-Membo; Ibtihel Smeti; Idowu B. Olawoye; Ifedayo Adetifa; Ikponmwosa Odia; Ilhem Boutiba-Ben Boubaker; Isaac Ssewanyana; Isatta Wurie; Iyaloo S Konstantinus; Jacqueline Wemboo Afiwa Halatoko; James Ayei; Janaki Sonoo; Jean Bernard LEKANA-DOUKI; Jean-Claude C. Makangara; Jean-Jacques M. Tamfum; Jean-Michel Heraud; Jeffrey G. Shaffer; Jennifer Giandhari; Jennifer Musyoki; Jessica N. Uwanibe; Jinal N. Bhiman; Jiro Yasuda; Joana Morais; Joana Q. Mends; Jocelyn Kiconco; John Demby Sandi; John Huddleston; John Kofi Odoom; John M. Morobe; John O. Gyapong; John T. Kayiwa; Johnson C. Okolie; Joicymara Santos Xavier; Jones Gyamfi; Joseph Humphrey Kofi Bonney; Joseph Nyandwi; Josie Everatt; Jouali Farah; Joweria Nakaseegu; Joyce M. Ngoi; Joyce Namulondo; Judith U. Oguzie; Julia C. Andeko; Julius J. Lutwama; Justin O'Grady; Katherine J Siddle; Kathleen Victoir; Kayode T. Adeyemi; Kefentse A. Tumedi; Kevin Sanders Carvalho; Khadija Said Mohammed; Kunda G. Musonda; Kwabena O. Duedu; Lahcen Belyamani; Lamia Fki-Berrajah; Lavanya Singh; Leon Biscornet; Leonardo de Oliveira Martins; Lucious Chabuka; Luicer Olubayo; Lul Lojok Deng; Lynette Isabella Ochola-Oyier; Madisa Mine; Magalutcheemee Ramuth; Maha Mastouri; Mahmoud ElHefnawi; Maimouna Mbanne; Maitshwarelo I. Matsheka; Malebogo Kebabonye; Mamadou Diop; Mambu Momoh; Maria da Luz Lima Mendonca; Marietjie Venter; Marietou F Paye; Martin Faye; Martin M. Nyaga; Mathabo Mareka; Matoke-Muhia Damaris; Maureen W. Mburu; Maximillian Mpina; Claujens Chastel MFOUTOU MAPANGUY; Michael Owusu; Michael R. Wiley; Mirabeau Youtchou Tatfeng; Mitoha Ondo'o Ayekaba; Mohamed Abouelhoda; Mohamed Amine Beloufa; Mohamed G Seadawy; Mohamed K. Khalifa; Mohammed Koussai DELLAGI; Mooko Marethabile Matobo; Mouhamed Kane; Mouna Ouadghiri; Mounerou Salou; Mphaphi B. Mbulawa; Mudashiru Femi Saibu; Mulenga Mwenda; My V.T. Phan; Nabil Abid; Nadia Touil; Nadine Rujeni; Nalia Ismael; Ndeye Marieme Top; Ndongo Dia; Nedio Mabunda; Nei-yuan Hsiao; Nelson Borico Silochi; Ngonda Saasa; Nicholas Bbosa; Nickson Murunga; Nicksy Gumede; Nicole Wolter; Nikita Sitharam; Nnaemeka Ndodo; Nnennaya A. Ajayi; Noel Tordo; Nokuzola Mbhele; Norosoa H Razanajatovo; Nosamiefan Iguosadolo; Nwando Mba; Ojide C. Kingsley; Okogbenin Sylvanus; Okokhere Peter; Oladiji Femi; Olumade Testimony; Olusola Akinola Ogunsanya; Oluwatosin Fakayode; Onwe E. Ogah; Ousmane Faye; Pamela Smith-Lawrence; Pascale Ondoa; Patrice Combe; Patricia Nabisubi; Patrick Semanda; Paul E. Oluniyi; Paulo Arnaldo; Peter Kojo Quashie; Philip Bejon; Philippe Dussart; Phillip A. Bester; Placide K. Mbala; Pontiano Kaleebu; Priscilla Abechi; Rabeh El-Shesheny; Rageema Joseph; Ramy Karam Aziz; Rene Ghislain Essomba; Reuben Ayivor-Djanie; Richard Njouom; Richard O. Phillips; Richmond Gorman; Robert A. Kingsley; Rosemary Audu; Rosina A.A. Carr; Saad El Kabbaj; Saba Gargouri; Saber Masmoudi; Safietou Sankhe; Sahra Isse Mohamed; Salma MHALLA; Salome Hosch; Samar Kamal Kassim; Samar Metha; Sameh Trabelsi; Sanaa Lemriss; Sara Hassan Agwa; Sarah Wambui Mwangi; Seydou Doumbia; Sheila Makiala-Mandanda; Sherihane Aryeetey; Shymaa S. Ahmed; SIDI MOHAMED AHMED; Siham Elhamoumi; Sikhulile Moyo; Silvia Lutucuta; Simani Gaseitsiwe; Simbirie Jalloh; Soafy Andriamandimby; Sobajo Oguntope; Solene Grayo; Sonia Lekana-Douki; Sophie Prosolek; Soumeya Ouangraoua; Stephanie van Wyk; Stephen F. Schaffner; Stephen Kanyerezi; Steve AHUKA-MUNDEKE; Steven Rudder; Sureshnee Pillay; Susan Nabadda; Sylvie Behillil; Sylvie L. Budiaki; Sylvie van der Werf; Tapfumanei Mashe; Tarik Aanniz; Thabo Mohale; Thanh Le-Viet; Thirumalaisamy P. Velavan; Tobias Schindler; Tongai Maponga; Trevor Bedford; Ugochukwu J. Anyaneji; Ugwu Chinedu; Upasana Ramphal; Vincent Enouf; Vishvanath Nene; Vivianne Gorova; Wael H. Roshdy; Wasim Abdul Karim; William K. Ampofo; Wolfgang Preiser; Wonderful T. Choga; Yahaya ALI ALI AHMED; Yajna Ramphal; Yaw Bediako; Yeshnee Naidoo; Yvan Butera; Zaydah R. de Laurent; Ahmed E.O. Ouma; Anne von Gottberg; George Githinji; Matshidiso Moeti; Oyewale Tomori; Pardis C. Sabeti; Amadou A. Sall; Samuel O. Oyola; Yenew K. Tebeje; Sofonias K. Tessema; Tulio de Oliveira; Christian Happi; Richard Lessells; John Nkengasong; Eduan Wilkinson.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.04.17.22273906

Résumé

Investment in Africa over the past year with regards to SARS-CoV-2 genotyping has led to a massive increase in the number of sequences, exceeding 100,000 genomes generated to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence within their own borders, coupled with a decrease in sequencing turnaround time. Findings from this genomic surveillance underscores the heterogeneous nature of the pandemic but we observe repeated dissemination of SARS-CoV-2 variants within the continent. Sustained investment for genomic surveillance in Africa is needed as the virus continues to evolve, particularly in the low vaccination landscape. These investments are very crucial for preparedness and response for future pathogen outbreaks.

6.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.04.08.22273160

Résumé

Background In South Africa 19% of the adult population aged 15-49 years are living with HIV (LWH). Few data on the influence of HIV on SARS-CoV-2 household transmission are available. Methods We performed a case-ascertained, prospective household transmission study of symptomatic index SARS-CoV-2 cases LWH and HIV-uninfected adults and their contacts in South Africa. Households were followed up thrice weekly for 6 weeks to collect nasal swabs for SARS-CoV-2 testing. We estimated household cumulative infection risk (HCIR), duration of SARS-CoV-2 positivity (at cycle threshold value<30 as proxy for high viral load), and assessed associated factors. Results We recruited 131 index cases and 457 household contacts. HCIR was 59% (220/373); not differing by index HIV status (60% [50/83] in cases LWH vs 58% [173/293] in HIV-uninfected cases, OR 1.0, 95%CI 0.4-2.3). HCIR increased with index case age (35-59 years: aOR 3.4 95%CI 1.5-7.8 and 60 years or older: aOR 3.1, 95%CI 1.0-10.1) compared to 18-34 years, and contacts age, 13-17 years (aOR 7.1, 95%CI 1.5-33.9) and 18-34 years (aOR 4.4, 95%CI 1.0-18.4) compared to <5 years. Mean positivity duration at high viral load was 7 days (range 2-28), with longer positivity in cases LWH (aHR 0.3, 95%CI 0.1-0.7). Conclusions HIV-infection was not associated with higher HCIR, but cases LWH had longer positivity duration at high viral load. Adults aged >35 years were more likely to transmit, and individuals aged 13-34 to acquire SARS-CoV-2 in the household. Health services must maintain HIV testing with initiation of antiretroviral therapy for those HIV-infected.


Sujets)
Infections à VIH
7.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.02.10.22270772

Résumé

By November 2021, after the third SARS-CoV-2 wave in South Africa, seroprevalence was 60% (95%CrI 56%-64%) in a rural and 70% (95%CrI 56%-64%) in an urban community; highest in individuals aged 13-18 years. High seroprevalence prior to Omicron emergence may have contributed to reduced severity observed in the 4th wave.

8.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.02.11.22270854

Résumé

Understanding the build-up of immunity with successive SARS-CoV-2 variants and the epidemiological conditions that favor rapidly expanding epidemics will facilitate future pandemic control. High-resolution infection and serology data from longitudinal household cohorts in South Africa reveal high cumulative infection rates and durable cross-protective immunity conferred by prior infection in the pre-Omicron era. Building on the cohorts history of past exposures to different SARS-CoV-2 variants and vaccination, we use mathematical models to explore the fitness advantage of the Omicron variant and its epidemic trajectory. Modelling suggests the Omicron wave infected a large fraction of the population, leaving a complex landscape of population immunity primed and boosted with antigenically distinct variants. Future SARS-CoV-2 resurgences are likely under a range of scenarios of viral characteristics, population contacts, and residual cross-protection. One Sentence SummaryClosely monitored population in South Africa reveal high cumulative infection rates and durable protection by prior infection against pre-Omicron variants. Modelling indicates that a large fraction of the population has been infected with Omicron; yet epidemic resurgences are plausible under a wide range of epidemiologic scenarios.

9.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.01.14.476382

Résumé

Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Sujets)
Crises épileptiques
10.
Raquel Viana; Sikhulile Moyo; Daniel Gyamfi Amoako; Houriiyah Tegally; Cathrine Scheepers; Richard J Lessells; Jennifer Giandhari; Nicole Wolter; Josie Everatt; Andrew Rambaut; Christian Althaus; Eduan Wilkinson; Adriano Mendes; Amy Strydom; Michaela Davids; Simnikiwe Mayaphi; Simani Gaseitsiwe; Wonderful T Choga; Dorcas Maruapula; Boitumelo Zuze; Botshelo Radibe; Legodile Koopile; Roger Shapiro; Shahin Lockman; Mpaphi B. Mbulawa; Thongbotho Mphoyakgosi; Pamela Smith-Lawrence; Mosepele Mosepele; Mogomotsi Matshaba; Kereng Masupu; Mohammed Chand; Charity Joseph; Lesego Kuate-Lere; Onalethatha Lesetedi-Mafoko; Kgomotso Moruisi; Lesley Scott; Wendy Stevens; Constantinos Kurt Wibmer; Anele Mnguni; Arshad Ismail; Boitshoko Mahlangu; Darren P. Martin; Verity Hill; Rachel Colquhoun; Modisa S. Motswaledi; James Emmanuel San; Noxolo Ntuli; Gerald Motsatsi; Sureshnee Pillay; Thabo Mohale; Upasana Ramphal; Yeshnee Naidoo; Naume Tebeila; Marta Giovanetti; Koleka Mlisana; Carolyn Williamson; Nei-yuan Hsiao; Nokukhanya Msomi; Kamela Mahlakwane; Susan Engelbrecht; Tongai Maponga; Wolfgang Preiser; Zinhle Makatini; Oluwakemi Laguda-Akingba; Lavanya Singh; Ugochukwu J. Anyaneji; Monika Moir; Stephanie van Wyk; Derek Tshiabuila; Yajna Ramphal; Arisha Maharaj; Sergei Pond; Alexander G Lucaci; Steven Weaver; Maciej F Boni; Koen Deforche; Kathleen Subramoney; Diana Hardie; Gert Marais; Deelan Doolabh; Rageema Joseph; Nokuzola Mbhele; Luicer Olubayo; Arash Iranzadeh; Alexander E Zarebski; Joseph Tsui; Moritz UG Kraemer; Oliver G Pybus; Dominique Goedhals; Phillip Armand Bester; Martin M Nyaga; Peter N Mwangi; Allison Glass; Florette Treurnicht; Marietjie Venter; Jinal N. Bhiman; Anne von Gottberg; Tulio de Oliveira.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.19.21268028

Résumé

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in southern Africa has been characterised by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, whilst the second and third waves were driven by the Beta and Delta variants respectively. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng Province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, predicted to influence antibody neutralization and spike function4. Here, we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Sujets)
Syndrome respiratoire aigu sévère
12.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.08.20.21262342

Résumé

Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The emergence of C.1.2, associated with a high substitution rate, includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 VOC/VOIs. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta showed high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2.

13.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.05.26.21257849

Résumé

Background SARS-CoV-2 infections may be underestimated due to limited testing access, particularly in sub-Saharan Africa. South Africa experienced two SARS-CoV-2 waves, the second associated with emergence of variant 501Y.V2. In this study, we report longitudinal SARS-CoV-2 seroprevalence in cohorts in two communities in South Africa. Methods We measured SARS-CoV-2 seroprevalence two monthly in randomly selected household cohorts in a rural and an urban community (July 2020-March 2021). We compared seroprevalence to laboratory-confirmed infections, hospitalisations and deaths reported in the districts to calculate infection-case (ICR), infection-hospitalisation (IHR) and infection-fatality ratio (IFR) in the two waves of infection. Findings Seroprevalence after the second wave ranged from 18% (95%CrI 10-26%) and 28% (95%CrI 17-41%) in children <5 years to 37% (95%CrI 28-47%) in adults aged 19-34 years and 59% (95%CrI 49-68%) in adults aged 35-59 years in the rural and urban community respectively. Individuals infected in the second wave were more likely to be from the rural site (aOR 4.7, 95%CI 2.9-7.6), and 5-12 years (aOR 2.1, 95%CI 1.1-4.2) or [≥]60 years (aOR 2.8, 95%CI 1.1-7.0), compared to 35-59 years. The in-hospital IFR in the urban site was significantly increased in the second wave 0.36% (95%CI 0.28-0.57%) compared to the first wave 0.17% (95%CI 0.15-0.20%). ICR ranged from 3.69% (95%CI 2.59-6.40%) in second wave at urban community, to 5.55% (95%CI 3.40-11.23%) in first wave in rural community. Interpretation The second wave was associated with a shift in age distribution of cases from individuals aged to 35-59 to individuals at the extremes of age, higher attack rates in the rural community and a higher IFR in the urban community. Approximately 95% of SARS-CoV-2 infections in these two communities were not reported to the national surveillance system, which has implications for contact tracing and infection containment. Funding US Centers for Disease Control and Prevention


Sujets)
Syndrome respiratoire aigu sévère , Mort , COVID-19
14.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.09.21253184

Résumé

IntroductionSouth Africa experienced its first wave of COVID-19 peaking in mid-July 2020 and a larger second wave peaking in January 2021, in which the SARS-CoV-2 501Y.V2 lineage predominated. We aimed to compare in-hospital mortality and other patient characteristics between the first and second waves of COVID-19. MethodsWe analysed data from the DATCOV national active surveillance system for COVID-19 hospitalisations. We defined four wave periods using incidence risk for hospitalisation, pre-wave 1, wave 1, pre-wave 2 and wave 2. We compared the characteristics of hospitalised COVID-19 cases in wave 1 and wave 2, and risk factors for in-hospital mortality accounting for wave period using multivariable logistic regression. ResultsPeak rates of COVID-19 cases, admissions and in-hospital deaths in the second wave exceeded the rates in the first wave (138.1 versus 240.1; 16.7 versus 28.9; and 3.3 versus 7.1 respectively per 100,000 persons). The weekly average incidence risk increase in hospitalisation was 22% in wave 1 and 28% in wave 2 [ratio of growth rate in wave two compared to wave one: 1.04, 95% CI 1.04-1.05]. On multivariable analysis, after adjusting for weekly COVID-19 hospital admissions, there was a 20% increased risk of in-hospital mortality in the second wave (adjusted OR 1.2, 95% CI 1.2-1.3). In-hospital case fatality-risk (CFR) increased in weeks of peak hospital occupancy, from 17.9% in weeks of low occupancy (<3,500 admissions) to 29.6% in weeks of very high occupancy (>12,500 admissions) (adjusted OR 1.5, 95% CI 1.4-1.5). Compared to the first wave, individuals hospitalised in the second wave, were more likely to be older, 40-64 years [OR 1.1, 95% CI 1.0-1.1] and [≥]65 years [OR 1.1, 95% CI 1.1-1.1] compared to <40 years; and admitted in the public sector [OR 2.2, 95% CI 1.7-2.8]; and less likely to have comorbidities [OR 0.5, 95% CI 0.5-0.5]. ConclusionsIn South Africa, the second wave was associated with higher incidence and more rapid increase in hospitalisations, and increased in-hospital mortality. While some of this is explained by increasing pressure on the health system, a residual increase in mortality of hospitalised patients beyond this, could be related to the new lineage 501Y.V2. RESEARCH IN CONTEXT O_TEXTBOXEvidence before this studyMost countries have reported higher numbers of COVID-19 cases in the second wave but lower case-fatality risk (CFR), in part due to new therapeutic interventions, increased testing and better prepared health systems. South Africa experienced its second wave which peaked in January 2021, in which the variant of concern, SARS-CoV-2 501Y.V2 predominated. New variants have been shown to be more transmissible and in the United Kingdom, to be associated with increased hospitalisation and mortality rates in people infected with variant B.1.1.7 compared to infection with non-B.1.1.7 viruses. There are currently limited data on the severity of lineage 501Y.V2. Added value of this studyWe analysed data from the DATCOV national active surveillance system for COVID-19 hospitalisations, comparing in-hospital mortality and other patient characteristics between the first and second waves of COVID-19. The study revealed that after adjusting for weekly COVID-19 hospital admissions, there was a 20% increased risk of in-hospital mortality in the second wave. Our study also describes the demographic shift from the first to the second wave of COVID-19 in South Africa, and quantifies the impact of overwhelmed hospital capacity on in-hospital mortality. Implications of all the available evidenceOur data suggest that the new lineage (501Y.V2) in South Africa may be associated with increased in-hospital mortality during the second wave. Our data should be interpreted with caution however as our analysis is based on a comparison of mortality in the first and second wave as a proxy for dominant lineage and we did not have individual-level data on lineage. Individual level studies comparing outcomes of people with and without the new lineage based on sequencing data are needed. To prevent high mortality in a potential third wave, we require a combination of strategies to slow the transmission of SARS-CoV-2, to spread out the peak of the epidemic, which would prevent hospital capacity from being breached. C_TEXTBOX


Sujets)
COVID-19
16.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.01.18.426984

Résumé

Recently, a new SARS-CoV-2 lineage called B.1.1.7 has emerged in the United Kingdom that was reported to spread more efficiently than other strains. This variant has an unusually large number of mutations with 10 amino acid changes in the spike protein, raising concerns that its recognition by neutralizing antibodies may be affected. Here, we investigated SARS-CoV-2-S pseudoviruses bearing either the Wuhan reference strain or the B.1.1.7 lineage spike protein with sera of 16 participants in a previously reported trial with the mRNA-based COVID-19 vaccine BNT162b2. The immune sera had equivalent neutralizing titers to both variants. These data, together with the combined immunity involving humoral and cellular effectors induced by this vaccine, make it unlikely that the B.1.1.7 lineage will escape BNT162b2-mediated protection.


Sujets)
COVID-19
17.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.01.18.427166

Résumé

SARS-CoV-2 501Y.V2, a novel lineage of the coronavirus causing COVID-19, contains multiple mutations within two immunodominant domains of the spike protein. Here we show that this lineage exhibits complete escape from three classes of therapeutically relevant monoclonal antibodies. Furthermore 501Y.V2 shows substantial or complete escape from neutralizing antibodies in COVID-19 convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and may foreshadow reduced efficacy of current spike-based vaccines.


Sujets)
COVID-19
18.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248640

Résumé

Continued uncontrolled transmission of the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in many parts of the world is creating the conditions for significant virus evolution. Here, we describe a new SARS-CoV-2 lineage (501Y.V2) characterised by eight lineage-defining mutations in the spike protein, including three at important residues in the receptor-binding domain (K417N, E484K and N501Y) that may have functional significance. This lineage emerged in South Africa after the first epidemic wave in a severely affected metropolitan area, Nelson Mandela Bay, located on the coast of the Eastern Cape Province. This lineage spread rapidly, becoming within weeks the dominant lineage in the Eastern Cape and Western Cape Provinces. Whilst the full significance of the mutations is yet to be determined, the genomic data, showing the rapid displacement of other lineages, suggest that this lineage may be associated with increased transmissibility.

SÉLECTION CITATIONS
Détails de la recherche